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ABSTRACT
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In the absence of a global frame of reference, the ability to fuse data collected by multiple mobile agents that operate 
in separate coordinate systems is critical for enabling autonomy in multi-agent navigation and perception systems. Of 
particular interest is the ability to fuse rigid body metric environment models in

order to construct a global model from the data collected by each agent. This thesis presents a data fusion approach 
for combining Gaussian metric models of an environment constructed by multiple agents that operate outside of a 
global reference frame. Common landmarks are combined using a nonlinear least squares approximation, which 
yields an exact solution under the assumption of isotropic covariance. Rigid body transform parameters and common 
landmarks are found using a hypergraph registration approach. The approach demonstrates a robustness to outliers in 
registration by incorporating unit quaternions to reject outliers on a unit sphere. The performance of the approach is 
evaluated using experimental benchmark datasets collected in natural and semi-structured environments with camera 
and laser sensors.
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In the absence of a global frame of reference, the ability to fuse data collected

by multiple mobile agents that operate in separate coordinate systems is criti-

cal for enabling autonomy in multi-agent navigation and perception systems. Of

particular interest is the ability to fuse rigid body metric environment models in

order to construct a global model from the data collected by each agent. This

thesis presents a data fusion approach for combining Gaussian metric models of

an environment constructed by multiple agents that operate outside of a global

reference frame. Common landmarks are combined using a nonlinear least squares

approximation, which yields an exact solution under the assumption of isotropic

covariance. Rigid body transform parameters and common landmarks are found

using a hypergraph registration approach. The approach demonstrates a robust-

ness to outliers in registration by incorporating unit quaternions to reject outliers

on a unit sphere. The performance of the approach is evaluated using experi-

mental benchmark datasets collected in natural and semi-structured environments

with camera and laser sensors.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The general nature of the problem under consideration is to construct a global

map of landmarks from the individual efforts of collaborating agents that operate

outside of a global frame of reference (examples of such mobile agents are provided

in Fig. 1.1). Each agent independently builds a data model of the environment

referred to as a stochastic map [1, 2]. Constructing a combined global map within

a common reference frame from the individual maps of the agents is referred to as

a problem of data fusion in multiple coordinate systems. Intuitively, the problem

has the interpretation of a mathematical jigsaw puzzle: the individual data models

are the disoriented pieces and the sought after global map is the completed puzzle.

A benchmark scenario based on the Victoria Park benchmark dataset is illus-

trated in Fig. 1.2. The satellite image shows the ground truth environment from

which the data models are obtained. Trees (landmarks) located in the park are

mapped from the global reference frame of the environment to the individual local

reference frames of the mobile agents. Each agent thus has an independent, but

partial model of the explored environment. The shared objective of the agents is

to reconstruct the state of nature from the sensor measurements independently ob-

tained by each agent, which is a common problem encountered in signal processing

[3, 4, 5, 6, 7], computer vision and robotics.

Stochastic maps are obtained by independent agents using various estimation

techniques. In robotics, the solution to the simultaneous localization and mapping

1
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Figure 1.1: Illustration of mobile robotic agents. Land rovers such as (left) Pioneer
robots, (center) Segways and (right) the Mars Curiosity rover are examples of
mobile agents that operate in environments with limited access to global reference
frames. The main topic of this thesis is the data fusion problem of constructing a
global metric map from rigid-body data models obtained in the reference frames
of each agent.

(SLAM) problem provides an agent with a data model of the environment as a

model of landmark locations (see [1, 2, 8, 9, 10] and the references therein). The

focus of this thesis, however, is on the fusion – rather than building – of stochastic

maps (for completeness, however, an example filtering algorithm used for building

metric data models is provided in Appendix A.1). Our starting point is at the

individual stochastic maps, which are made available to a fusion agent for the

construction of a global map.

The fusion problem with multiple sensor observations is challenging for several

reasons, one being that the problem contains both discrete and continuous parts

[11, 12]. In order to construct a global map, the fusion agent must first identify

common landmarks residing in two separate maps. Using the earlier jigsaw analogy,

the solver has to first identify common edges in order to match the individual pieces.

Prior to exchanging stochastic maps, the agents are assumed to operate with no

prior knowledge concerning the common landmarks (i.e., the common trees when

considering the Victoria Park example) that are contained within the individual

maps. The problem of matching common landmarks is of a combinatorial nature

2
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(data model q)(data model p)

(fusion agent p) (data contributor q)

Student Version of MATLAB

Student Version of MATLAB

Environment

xp,Σp

xq,Σq

Figure 1.2: A data fusion problem involving rigid-body data models. The data
models of agent p (bottom left) and agent q (bottom right) illustrate landmark
locations estimated from the sensor observations of two mobile agents operating
outside of a global reference frame. Uncertainties in estimation are indicated by
ellipses and the path of exploration is shown by dotted lines. Estimation of a
common global map from the individual data models, each obtained in a separate
coordinate system, requires inferring common landmarks in addition to determin-
ing a common frame of reference.

in general, which eliminates exhaustive search as an option for large maps.

Even if common landmarks between two maps have been identified, the agents

are faced with the registration problem of determining not only the best landmark

estimates of common and uncommon landmarks contained by noisy maps obtained

in separate coordinate systems, but also to determine the spatial parameters of ro-

tation and translation. Describing this again in terms of the earlier jigsaw analogy:

3
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not only are the pieces disoriented, but the edges are also imprecise (which makes

it harder to see how the pieces fit together).

1.1.1 Related work

The data fusion problem considered in this paper has been studied in various

forms. Zhou et al. [3] derived a two-step iterative optimization procedure for es-

timating the locations of common targets using range and azimuth measurements

obtained by two separate radar sensors. Each sensor observes the locations of tar-

gets within a reference frame related by a known displacement. The framework

proposed in this paper considers the more general case that the sensor reference

frames are related by an unknown displacement and rotation as part of a nonlin-

ear least squares optimization, the solution of which is obtained in closed form.

Thrun and Liu [11] proposed an SR-tree (Sphere/Rectangle-tree) search [13] in

consideration of the matching problem. Common landmark correspondences and

rotation-translation parameters are found using an iterative hill climbing approach

to match triplet combinations formed within a small radius of the landmarks in

each map. The radius forming the feature vectors of the SR-tree, however, would

need to be adaptive in order to generalize to different environments. Estimates of

common landmarks are determined separately by a collapsing operation performed

on matched landmarks in information form (see Grime and Durrant-Whyte [14],

as well as Sukkarieh et al. [15], for further reading on fusion using information

filtering). Julier and Uhlmann [16] introduced the covariance intersection algo-

rithm as an approach to the data fusion problem. Their algorithm uses a convex

combination of state information to achieve data fusion, but has the limitation

that the input data must be of the same dimension (which is often not the case of

4
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stochastic maps built within different regions of exploration). Tardós et al. [17],

and later Castellanos et al. [18], proposed map joining as a technique to enable an

individual mobile robot to construct a global stochastic map based on a sequence

of local maps. The approach is related to this paper by considering the sequence

of local maps as being obtained from separate robots, but requires knowledge of a

base reference to construct a global map.

Williams et al. [19] considered the fusion problem by providing parameter esti-

mates of the relative rotation and translation between global and local maps. The

expressions are derived by observing the geometry of the landmarks within each

map. Our approach is distinct from [19] in that the geometry of the landmarks

is incorporated in a nonlinear least squares solution based on the maximum like-

lihood principle. Several authors such as Zhou and Roumeliotis [20], Andersson

and Nygards [21], Benedettelli et al. [22] and Aragues et al. [23] considered ren-

dezvous approaches to the alignment problem. Rendezvous approaches, however,

are somewhat restrictive as the agents are required to be in close proximity.

The matching approach of this paper is motivated by the work of Groth [24] and

Ogawa [25]. Groth proposed one of the earliest matching algorithms in the con-

text of astronomical point patterns, where a list of star measurements are matched

against a known star catalog. In the proposed approach, structured point triplets

referred to simply as triangles are used to match the measurements against the cat-

alog. The Groth triangle convention is also incorporated in our approach, however

the matching approach of Groth is not practical for large maps since all possible

combinations of triangles are considered. An alternative approach was proposed

by Ogawa [25], which instead incorporated Delaunay triangulations [26] to address

the star matching problem. This paper therefore uses Delaunay triangulations

5
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with triangles that follow the Groth convention as a graphical model for match-

ing stochastic maps. Further insight into the structure of the model is found by

arranging the triangles in order of increasing perimeter.

1.1.2 Summary of results

A maximum likelihood framework is proposed for the construction of a global map

from local stochastic maps. The proposed approach includes 1) a data registration

approach referred to as generalized likelihood data fusion and 2) a closed form least

squares parameter estimation framework for jointly estimating rotation, translation

and common landmark parameters. A Gaussian likelihood function is presented

as the main proxy for deriving the procedures of each step.

Data registration is a step that is performed in the absence of a global frame of

reference, which requires a technique that is affine invariant. To this end, the data

models of each agent are modeled as directed hypergraphs constructed from Delau-

nay triangulations. The hyperedges of each directed hypergraph are constructed

from directed Delaunay triangles that follow the Groth convention, which leads to

an affine invariant approach for determining common landmarks. The proposed

registration approach uses a generalized likelihood ratio as a matching metric in

order to obtain globally optimal landmark correspondences from the solution of a

linear assignment problem. The GLR metric is computed in closed form and the

bipartite matching of hypergraphs is solved in polynomial time as a solution to a

linear programming problem.

Once common landmarks are identified, the registration solution of rotation,

translation and common landmark locations between the data models is computed
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from the vertices of the hypergraph model. The main contributions include 1)

a closed-form solution to the parameter estimation problem of determining rigid-

body transform parameters as the solution to a nonlinear non-convex optimization,

2) benchmark performance bounds obtained in closed form and a quantitative

metric for determining the value of data fusion (which has application to decision

making problems that may arise in the area of data fusion) and 3) a robust data

registration approach for obtaining for common directed triangles in presence of

many outliers.

1.2 Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the

estimation models used to combine data contributed by a fusion agent and a con-

tributing agent, each of which obtain the data is separate coordinate systems.

Chapter 3 derives benchmark performance bounds the proposed estimators and

includes an analytical study on the value of data fusion. Chapter 4 details a data

registration approach based on the generalized likelihood statistics of a hypergraph

model constructed from the data of each agent. Concluding remarks are provided

in Chapter 6.
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CHAPTER 2

MAXIMUM LIKELIHOOD ESTIMATION

2.1 Environment model and available data

A fusion agent p is an agent that seeks to build a global metric model of an

environment from data exchanged with a contributing agent q. A summary of the

parameters used to describe the data fusion problem is as follows.

1. Common landmarks: The parameter µ contains the ground truth locations

of n landmark locations estimated by both a fusion agent p and a data

contributor q.

2. Uncommon landmarks: The parameters vp and vq contain the ground truth

locations of landmark locations estimated by the fusion agent p and the

contributor q, respectively, without any overlap on landmark locations.

3. Rigid-body transformation: The rotation parameter θ and the translation t

define a rigid-body transform between the coordinate systems of the fusion

agent and the contributor.

4. Data: Landmark locations estimated in the coordinate systems of the fusion

agent p and the data contributor q are contained by the data vectors xp and

xq, respectively. The covariances Σp and Σq model the uncertainty in the

data of agent p and agent q, respectively.

Without loss of generality, the coordinate system of the fusion agent p is defined

in the ground truth coordinate system containing the parameters {µ, vp, vq}.
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Some notations used in this chapter are as follows. The symbol ⊗ denotes the

Kronecker product operator (i.e., A⊗B = [aijB]) and the matrix Im is an m×m

identity matrix. The matrix r(θ) ∈ R2×2 denotes a rotation matrix

r(θ) ,

 cos θ − sin θ

sin θ cos θ

 (2.1)

with rotation parameter θ ∈ [−π, π], with a block diagonal form given by R(θ) ,

Im ⊗ r(θ). An equivalent form of (2.1) is given by r(θ) = Ic cos θ + Is sin θ, where

the constant 2× 2 matrices Ic and Is are defined as

Ic ,

 1 0

0 1

 and Is ,

 0 −1

1 0


respectively, with nonzero entries corresponding to the cosine and sine functions

of the rotation matrix r(θ). A translation input matrix is a matrix of the form

F , em ⊗ I2, where em is an m-vector with all entries equal to 1.
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2.2 Gaussian model of metric maps

Let the random vectors Xp and Xq represent the noisy observations obtained by

agents p and q, respectively. Prior to fusion, data is collected in the separate

coordinate systems of the agents (i.e., Xp and Xq reside in coordinate systems p

and q, respectively). The statistical model of matched Gaussian maps is given as

Xp = up +Wp (2.2)

Xq = R(θ)uq + Ft+Wq (2.3)

where Wp ∼ N (0, σ2
pI) and Wq ∼ N (0, σ2

qI) are independent zero-mean ad-

ditive Gaussian noise vectors. The ground truth observed by agent p is then

up = (µT , vTp )T , which is defined in the coordinate system of agent p, and the

ground truth of agent q is uq = (µT , vTq )T in the global reference frame, which is

observed in coordinate system q as

R(θ)uq + Ft =

R1(θ)

R0(θ)


 µ

vq

+

 F1

F0

 t (2.4)

where the subscripts 1 and 0 indicate the partition the map into common and

uncommon parts.

In order to separate the data registration and parameter estimation problems,

an assumption is made that the common landmarks in both maps are known. The

process of obtaining such a matching, however, is nontrivial and combinatorial in

general (see Section 4.3 for an affine invariant procedure for determining common

landmarks).
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2.3 Likelihood decomposition and closed form solution

Estimators of the parameters {µ, vp, vq, t, θ} are derived by considering the likeli-

hood function of the combined global map given by

L(µ, vp, vq, t, θ) , η exp−1

2
J(µ, vp, vq, t, θ) (2.5)

where the function J is defined as

J(µ, vp, vq, t, θ) ,
1

σ2
p

||xp − up||2 +
1

σ2
q

||xq −R(θ)uq − Ft||2 (2.6)

with xp = (x1T
p , x

0T
p )T and xq = (x1T

q , x
0T
q )T , corresponding to the structure of up

and uq, respectively. By partitioning the problem into common and uncommon

parts, it immediately follows that (2.6) decomposes as

J(µ, vp, vq, t, θ) = J0(vp, vq, t, θ) + J1(µ, t, θ) (2.7)

where J0 is the squared error function of estimating the uncommon landmarks vp

and vq, including the transform parameters {t, θ}, specified as

J0(vp, vq, t, θ) ,
1

σ2
p

||x0
p − vp||2 +

1

σ2
q

||x0
q −R0(θ)vq − F0t||2 (2.8)

and J1 is the squared error function of estimating the common landmarks contained

by the vector µ, also including {t, θ}, specified as

J1(µ, t, θ) ,
1

σ2
p

||x1
p − µ||2 +

1

σ2
q

||x1
q −R1(θ)µ− F1t||2. (2.9)
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This decomposition is exploited to minimize the combined error function J by

minimizing J0 and J1 separately, as stated by the following lemma.

Lemma 1 (Separable optimization) Let {µ∗, v∗p, v∗q , t∗, θ∗} be the global maxi-

mum of the likelihood function L, i.e.,

J(µ∗, v∗p, v
∗
q , t
∗, θ∗) = min

µ,vp,vq ,t,θ
J(µ, vp, vq, t, θ). (2.10)

If the solution {µ̂, t̂, θ̂} is the global minimum of J1 given by

(µ̂, t̂, θ̂) = argmin
µ,t,θ

J1(µ, t, θ), (2.11)

then µ∗ = µ̂, t∗ = t̂, θ∗ = θ̂ and

v∗p = x0
p, v∗q = RT

0 (θ̂)(x0
q − F0t̂) (2.12)

respectively.

Proof: With the decomposition J = J0 +J1, the proof is immediate by noting

that

J0

(
x0
p, R

T
0 (θ)(x0

q − F0t), t, θ
)

= 0 (2.13)

for any {µ, t, θ}. �

Lemma 1 shows that the maximum likelihood solution of the combined map

specified by u∗ = (µ∗T , v∗Tp , v∗Tq )T is obtained from the nonlinear least squares

optimization of the non-convex function J1. A global minimum is obtained by

deriving an equivalent expression of J1 as a sinusoidal form parameterized by the

unknown rotation parameter θ, which leads to a closed form solution as stated by

the following theorem.
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Theorem 1 (Closed form MLE) The ML estimators of the parameters

{µ, t, θ} are given by the following expressions.

1. The MLE of the rotation parameter θ is

θ∗ = sgn(β)

[
cos−1

(
α√

α2 + β2

)
− π

]
(2.14)

where sgn(·) is the signum function. The coefficients α and β are given by

α = −x1T
q (In ⊗ Ic)Qx1

p (2.15)

β = −x1T
q (In ⊗ Is)Qx1

p (2.16)

respectively, where Q = I2n − F1(F T
1 F1)−1F T

1 with n being the number of

common landmarks.

2. The MLE of the translation t is

t∗(θ∗) = (F T
1 F1)−1F T

1

[
x1
q −R(θ∗)x1

p

]
(2.17)

denoted hereafter as t∗.

3. The MLE of the common landmarks µ is

µ∗(θ∗) = φ∗px
1
p + φ∗qx

1
q (2.18)

denoted hereafter as µ∗. The matrix gains φ∗p and φ∗q are given by

φ∗p = I2n −
σ2
p

σ2
p + σ2

q

Q (2.19)

φ∗q =
σ2
p

σ2
p + σ2

q

QRT (θ∗) (2.20)

respectively.
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The following lemmas are used in the proof of Theorem 1.

Lemma 2 The matrix Q is an idempotent and symmetric matrix that commutes

with a block diagonal matrix of the form A = In ⊗B, with B ∈ R2×2.

Proof: Using the expression for F TF given by

F TF = [en ⊗ I2]T [en ⊗ I2]

= [eTnen]⊗ [IT2 I2]

= nI2

it follows that (F TF )−1 = 1
n
I2 and F (F TF )−1F T = 1

n
FF T where

FF T = [en ⊗ I2][en ⊗ I2]T

= [ene
T
n ]⊗ [I2I

T
2 ]

=
{

[ene
T
n ]⊗ [I2I

T
2 ]
}T

= (FF T )T

meaning 1
n
FF T = F (F TF )−1F T = Q̄ is symmetric, leading to the conclusion that

QT = (I2n − Q̄)T

= IT2n − Q̄T

= I2n − Q̄

= Q

which proves that Q is symmetric. Notice that the product of Q with itself is
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28



QQ = (I2n − Q̄)(I2n − Q̄)

= I2n − 2Q̄+ Q̄Q̄

= I2n − 2Q̄+ Q̄

= I2n − Q̄

= Q

which proves that Q is idempotent. The product of the matrix FF T and the block

diagonal matrix A = In ⊗B is given by

FF TA = [(en ⊗ I2)(en ⊗ I2)T ][In ⊗B]

= [(ene
T
n )⊗ I2][In ⊗B]

= [(ene
T
n )In]⊗ [I2B]

= [In(ene
T
n )]⊗ [BI2]

= [In ⊗B][(ene
T
n )⊗ I2]

= [In ⊗B][(en ⊗ I2)(en ⊗ I2)T ]

= AFF T .

Since FF TA = AFF T and F TF = nI2, it follows that

QA = [I2n − F (F TF )−1F T ]A

= A− 1
n
FF TA

= A− 1
n
AFF T

= A[I2n − F (F TF )−1F T ]

= AQ

which proves that Q and A commute. �
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Lemma 3 The sinusoidal form with constant coefficients α, β, γ ∈ R defined as

Js(θ) , α cos θ + β sin θ + γ, θ ∈ [−π, π] (2.21)

reaches a global minimum at the value θ∗ = Υ(β, α), where the function Υ is

defined as

Υ(β, α) , sgn(β)

[
cos−1

(
α√

α2 + β2

)
− π

]
(2.22)

where sgn(·) is the signum function.

Proof: The following proof is elementary in nature and applies for all γ ∈ R

since γ is constant with respect to θ. Consider the trigonometric identity of the

form

(κ cosϕ) cos θ + (κ sinϕ) sin θ = κ cos (θ − ϕ) (2.23)

with κ ∈ R and θ, ϕ ∈ [−π, π]. By considering the sum

α2 + β2 = (κ cosϕ)2 + (κ sinϕ)2

= κ2
(
cos2 ϕ+ sin2 ϕ

)
= κ2

where α = κ cosϕ and β = κ sinϕ, it follows by taking square roots that κ =√
α2 + β2 so that

α cos θ + β sin θ =
√
α2 + β2 cos (θ − ϕ) (2.24)
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with α, β ∈ R. An expression for the angle ϕ is found by considering the ratio

β

α
=

κ sinϕ

κ cosϕ

= tanϕ

which leads to the relation

ϕ = tan−1

(
β

α

)
. (2.25)

The arctangent in (2.25) is typically implemented using the atan2 function, which

is expressed in closed form as

ϕ(β, α) = sgn(β) cos−1

(
α√

α2 + β2

)
(2.26)

as a function of α and β (note that the expression is undefined in the case that

α = β = 0). It directly follows that the sinusoidal form is maximized by the value

θmax = ϕ(β, α) and minimized by the value

θ∗ = Υ(β, α)

= sgn(β)

[
cos−1

(
α√

α2 + β2

)
− π

]

by observing that

α cos θ∗ + β sin θ∗ = κ cos (θ∗ − ϕ(β, α))

= κ cos (− sgn(β)π)

= κ cos (π)

where cos (π) = −1 is the minimum value of cos θ on the interval θ ∈ [−π, π]. �
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Proof: [Proof of Theorem 1] Minimizing (2.38) with respect to (w.r.t.) µ leads

to

µ̄(θ, t) =
σ2
pσ

2
q

σ2
p + σ2

q

[
1

σ2
p

xp +
1

σ2
q

RT (θ)(xq − Ft)
]

(2.27)

and minimizing (2.38) w.r.t. t leads to

t̄(θ, µ) = (F TF )−1F T (xq −R(θ)µ) . (2.28)

Using the evaluation µ = µ̄(θ, t) in (2.28) results in the MLE of t as a function of

θ given by

t∗(θ) = (F TF )−1F T (xq −R(θ)xp) . (2.29)

Applying the evaluation t = t∗(θ) in (2.27) leads to the MLE of µ as a function of

θ given by

µ∗(θ) = φp(θ)xp + φq(θ)xq. (2.30)

Using the symmetry and idempotence properties of the matrix Q (Lemma 2), it

follows from the expression (2.30) that

||xp − µ∗(θ)||2 = κp||xq −R(θ)xp||2QTQ

= κp||xq −R(θ)xp||2Q

where κp =
(

σ2
p

σ2
p+σ2

q

)2

. Similarly, it follows from (2.29) and (2.30) that

||xq −R(θ)µ∗(θ)− Ft∗(θ)||2 = κq||xq −R(θ)xp||2QTQ

= κq||xq −R(θ)xp||2Q
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where κq =
(

σ2
q

σ2
p+σ2

q

)2

. Using these simplifications to define

J∗1 (θ) , 1
2κ
J1(µ∗(θ), t∗(θ), θ)

= 1
2
||xq −R(θ)xp||2Q

(2.31)

where κ = 1
σ2
p
κp + 1

σ2
q
κq and expanding the norm in the right hand side (RHS) of

(2.31) as

||xq −R(θ)xp||2Q = xTpR
T (θ)QR(θ)xp + xTq Qxq

−2xTq QR(θ)xp,
(2.32)

it follows from Lemma 2 that the first term on the RHS of (2.32) reduces to

xTpR
T (θ)QR(θ)xp = xTpR

T (θ)R(θ)Qxp

= xTpQxp

(2.33)

so that from (2.31), (2.32) and (2.33), J∗1 (θ) reduces to

J∗1 (θ) =
1

2
(xTpQxp + xTq Qxq − 2xTq R(θ)Qxp). (2.34)

Notice in the last term on the RHS of (2.34) that

xTq R(θ)Qxp = xTq [Rc(θ) +Rs(θ)]Qxp

= xTq Rc(θ)Qxp + xTq Rs(θ)Qxp

(2.35)

where Rc(θ) = (In ⊗ Ic) cos(θ) and Rs(θ) = (In ⊗ Is) sin(θ), meaning that

−2xTq R(θ)Qxp = 2α cos(θ) + 2β sin(θ)
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where α = −xTq (In⊗ Ic)Qxp and β = −xTq (In⊗ Is)Qxp, from which it immediately

follows that

J∗1 (θ) = α cos(θ) + β sin(θ) + γ (2.36)

where γ = 1
2

(
xTpQxp + xTq Qxq

)
. By virtue of the sinusoidal form (2.36), it follows

from Lemma 3 that J∗1 (θ) has a unique minimum for θ ∈ [−π, π] given by (2.14),

which leads to the MLEs of t and µ given by (2.17) and (2.18), respectively. �

Theorem 1 provides a closed form solution for maximizing the likelihood L1

of common landmarks in the case that the covariances of p and q are of the form

Σp = σ2
pI2n and Σq = σ2

qI2n, respectively, and the data partitioning into common

and uncommon parts is known. Specifically, given the likelihood

L1(µ, t, θ) , η exp−1

2
J1(µ, t, θ) (2.37)

where the function J1 is defined as

J1(µ, t, θ) , ||x1
p − µ||2Σ−1

p
+ ||x1

q −R(θ)µ− Ft||2
Σ−1

q
, (2.38)

Theorem 1 specifies the parameters µ∗, t∗ and θ∗ such that

L1(µ∗, t∗, θ∗) = max
µ,t,θ

L1(µ, t, θ) (2.39)

for Σp = σ2
pI2n and Σq = σ2

qI2n. An important note, however, is thatQ = 02×2 when

n = 1, meaning n > 1 common landmarks are required to compute the solution of

Theorem 1 (a minimum of n = 3 common landmarks are recommended).
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2.4 Anisotropic approximation

An extension of the ML fusion rule (2.18) is derived by considering covariances

Σp and Σq of anisotropic structure (i.e., no assumption on structure beyond the

requirements of being positive definite and symmetric). In this case, least squares

estimators satisfying (2.39) are no longer found in closed form due to the nonlinear

parameter θ. Using the closed form solution θ∗ provided by Theorem 1, least

squares estimators of the parameters µ and t are derived instead to satisfy

L1(µ̂, t̂, θ∗) = max
µ,t

L1(µ, t, θ∗) (2.40)

resulting in a closed form approximation of the parameter µ of the form

µ̂(θ∗) = Φp(θ
∗)x1

p + Φq(θ
∗)x1

q (2.41)

where the fusion gains Φp and Φq are given by Algorithm 1 (see Section 2.4.1 for

derivation). By deriving µ̂ as a a linear combination of x1
p and x1

q, a combined

covariance matrix is then specified as

Σ̂(θ∗) = Φp(θ
∗)Σp[Φp(θ

∗)]T + Φq(θ
∗)Σq[Φq(θ

∗)]T . (2.42)

An illustration of the anisotropic approximation is shown in Fig. 2.1 in a data

fusion scenario involving n = 3 common landmarks (the performance of the pro-

posed fusion rules is discussed in Section 5.2). Some properties of the matrix gains

Φp and Φq are provided in Section 2.4.2.
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x [m]
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Student Version of MATLAB

Figure 2.1: Illustration of anisotropic data fusion: (top) x and (bottom) y loca-
tions. Three landmarks (vertical black lines) located at the coordinates (−15,−15),
(0, 0) and (15, 15) are estimated individually by a fusion agent (bold lines) and a
contributing agent (dashed lines). Data fusion enables the fusion agent to esti-
mate the location of landmarks by incorporating the data of a contributing agent
(illustrated in red). The peak of each distribution corresponds to the estimated
landmark location, while the width indicates the uncertainty of the estimate.
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Algorithm 1 Computation of Φp(θ) and Φq(θ)

Input: Relative rotation θ ∈ [−π, π] and covariance matrices Σp ∈ R2n×2n (agent
p) and Σq ∈ R2n×2n (agent q)

Output: Φp(θ) and Φq(θ)

Application: Multi-coordinate system data fusion

1: R(θ) = In ⊗ r(θ)

2: Σ̄(θ) =
[
Σ−1
p +RT (θ)Σ−1

q R(θ)
]−1

3: Ω(θ) = Σ−1
q − Σ−1

q R(θ)Σ̄(θ)RT (θ)Σ−1
q

4: F = en ⊗ I2

5: Q̃(θ) = F (F TΩ(θ)F )−1F T

6: Σ̃q(θ) = Σq +R(θ)ΣpR
T (θ)− Q̃(θ)

7: W (θ) = Σ̄(θ)RT (θ)Σ−1
q

8: Φp(θ) =
[
Σ̄(θ) +W (θ)Q̃(θ)W T (θ)

]
Σ−1
p

9: Φq(θ) = W (θ)Σ̃q(θ)W
T (θ)Σ−1

p RT (θ)

2.4.1 Derivation of fusion gains Φp(θ) and Φq(θ)

Given the parameter θ, the likelihood equations associated with the unknown

parameters µ and t are

∂ lnL1(µ, t, θ)

∂µ
= 0 and

∂ lnL1(µ, t, θ)

∂t
= 0 (2.43)

respectively. The estimators of µ and t that satisfy the respective likelihood equa-

tions are

µ̄ = Σ̄(θ)
[
Σ−1
p xp +RT (θ)Σ−1

q (xq − Ft)
]

(2.44)

where Σ̄(θ) =
[
Σ−1
p +RT (θ)Σ−1

q R(θ)
]−1

and
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t̄ = (F TΣ−1
q F )−1F TΣ−1

q (xq −R(θ)µ) (2.45)

respectively. Using the expression (2.44) and the evaluation µ = µ̄ in (2.45) leads

to the expression

t̂ = (F TΩ(θ)F )−1F TΣ−1
q

{
−R(θ)Σ̄(θ)Σ−1

p xp +
[
I2n −R(θ)Σ̄(θ)RT (θ)Σ−1

q

]
xq
}

(2.46)

where Ω(θ) = Σ−1
q − Σ−1

q R(θ)Σ̄(θ)RT (θ)Σ−1
q . Using the expression (2.46) and the

evaluation t = t̂ in (2.44) leads to the expression

µ̂(θ) = Σ̄(θ)
{

[Σ−1
p +RT (θ)K(θ)]xp +RT (θ)[Σ−1

q −K(θ)RT (θ)]xq
}

(2.47)

where K(θ) = Σ−1
q Q̃(θ)Σ−1

q R(θ)Σ̄(θ)Σ−1
p with Q̃(θ) = F (F TΩ(θ)F )−1F T . It fol-

lows that

µ̂(θ) = Γp(θ)xp + Γq(θ)xq (2.48)

where the matrix Γp(θ) is given by

Γp(θ) = Σ̄(θ)
[
Σ−1
p +RT (θ)K(θ)

]
= Σ̄(θ)Σ−1

p + Σ̄(θ)RT (θ)Σ−1
q Q̃(θ)Σ−1

q R(θ)Σ̄(θ)Σ−1
p

=
[
Σ̄(θ) + Σ̄(θ)RT (θ)Σ−1

q Q̃(θ)Σ−1
q R(θ)Σ̄(θ)

]
Σ−1
p

=
[
Σ̄(θ) +W (θ)Q̃(θ)W T (θ)

]
Σ−1
p

= Φp(θ)
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where W (θ) = Σ̄(θ)RT (θ)Σ−1
q and Φp(θ) =

[
Σ̄(θ) +W (θ)Q̃(θ)W T (θ)

]
Σ−1
p and the

matrix Γq(θ) is given by

Γq(θ) = Σ̄(θ)RT (θ)
[
Σ−1
q −K(θ)RT (θ)

]
= Σ̄(θ)RT (θ)

[
Σ−1
q − Σ−1

q Q̃(θ)Σ−1
q R(θ)Σ̄(θ)Σ−1

p RT (θ)
]

= Σ̄(θ)RT (θ)Σ−1
q

[
I2n − Q̃(θ)Σ−1

q R(θ)Σ̄(θ)Σ−1
p RT (θ)

]
= Σ̄(θ)RT (θ)Σ−1

q

[
R(θ)Σp(θ)Σ̄

−1(θ)RT (θ)Σq − Q̃(θ)
]

Σ−1
q R(θ)Σ̄(θ)Σ−1

p RT (θ)

= W (θ)
[
R(θ)Σp(θ)Σ̄

−1(θ)RT (θ)Σq − Q̃(θ)
]
W T (θ)Σ−1

p RT (θ)

= W (θ)
{
R(θ)Σp(θ)

[
Σ−1
p +RT (θ)Σ−1

q R(θ)
]
RT (θ)Σq − Q̃(θ)

}
W T (θ)Σ−1

p RT (θ)

= W (θ)
[
Σq +R(θ)ΣpR

T (θ)− Q̃(θ)
]
W T (θ)Σ−1

p RT (θ)

= W (θ)Σ̃q(θ)W
T (θ)Σ−1

p RT (θ)

= Φq(θ)

where Σ̃q(θ) = Σq+R(θ)ΣpR
T (θ)−Q̃(θ) and Φq(θ) = W (θ)Σ̃q(θ)W

T (θ)Σ−1
p RT (θ).

2.4.2 Properties of Φp(θ) and Φq(θ)

The following properties of Φp(θ) and Φq(θ) are considered.

1. Property 1 states that the anisotropic approximation provided by (2.41)

yields the closed form solution (2.18) in the case that the Σp and Σq are

isotropic in structure.

2. Given that the data provided by each agent is obtained in separate coordinate

systems, it follows that a single landmark does not provide sufficient context

for constructing a combined map. Property 2 thus states that in the case of
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a single common landmark, the fusion agent p will retain its own landmark

estimate and ignore the data provided by the contributor q. A meaningful

application of data fusion in multiple coordinate systems therefore requires

the data to contain n > 1 common landmarks.

3. In the case that the coordinate systems of the agents are the same (and in

fact, for arbitrary t), Property 3 states that the data fusion rules provided

by (2.18) and (2.41) yield an affine combination of the common landmarks

x1
p and x1

q. In the general case of multiple coordinate systems, however, the

proposed fusion rules specify a linear combination of the data provided by

each agent.

Property 1 If Σp = σ2
pI2n and Σq = σ2

qI2n, respectively, then Φp(θ
∗) = φ∗p and

Φq(θ
∗) = φ∗q.

Proof: Using the simplifications of Σ̄(θ), Q̃(θ) and W (θ) given by

Σ̄(θ) =
σ2
pσ

2
q

σ2
p + σ2

q

I2n

Q̃(θ) = (σ2
p + σ2

q )Q̄

W (θ) =
σ2
p

σ2
p + σ2

q

RT (θ)

respectively, where Q̄ = F (F TF )−1F T , it follows that

Φp(θ) =
[
Σ̄(θ) +W (θ)Q̃(θ)W T (θ)

]
Σ−1
p

=
σ2
q

σ2
p+σ2

q
I2n +

σ2
p

σ2
p+σ2

q
Q̄

= I2n − σ2
p

σ2
p+σ2

q
Q
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Since Σ̃(θ) = (σ2
p + σ2

q )Q when Σp = σ2
pI2n and Σq = σ2

qI2n, the matrix Φq(θ)

reduces to

Φq(θ) = W (θ)Σ̃q(θ)W
T (θ)Σ−1

p RT (θ)

=
σ2
p

σ2
p+σ2

q
QRT (θ)

so that Φp(θ) = I2n − σ2
p

σ2
p+σ2

q
Q and Φq(θ) =

σ2
p

σ2
p+σ2

q
QRT (θ). �

Property 2 If n = 1, then Φp(θ) = I2 and Φq(θ) = 02×2 for θ ∈ [−π, π].

Proof: Since Q̃(θ) = Σq +R(θ)ΣpR
T (θ) when n = 1, it follows that

Σ̃q(θ) = Σq +R(θ)ΣpR
T (θ)− Q̃(θ)

= Σq +R(θ)ΣpR
T (θ)−

[
Σq +R(θ)ΣpR

T (θ)
]

= 02×2

so that Φp(θ) reduces as

Φp(θ) =
[
Σ̄(θ) +W (θ)Q̃(θ)W T (θ)

]
Σ−1
p

=
[
Σ̄(θ) + Σp − Σ̄(θ)

]
Σ−1
p

= I2.

Since Σ̃q(θ) = 02×2 when n = 1, Φq(θ) reduces as

Φq(θ) = W (θ)Σ̃q(θ)W
T (θ)Σ−1

p RT (θ)

= W (θ)[02×2]W T (θ)Σ−1
p RT (θ)

= 02×2

meaning Φp(θ) = I2 and Φq(θ) = 02×2 when n = 1. �
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Property 3 If θ = 0, Φp(0) + Φq(0) = I2n.

Proof: Using Φp(θ) and Φq(θ) provided in Algorithm 1 and the equivalent

form of Σ̃q(θ) when θ = 0 given by

Σ̃q(0) = Σq +R(0)ΣpR
T (0)− Q̃(0)

= Σq + Σp − Q̃(0)

it follows that Φp(0) and Φq(0) are then

Φp(0) =
[
Σ̄(0) +W (0)Q̃(0)W T (0)

]
Σ−1
p

and

Φq(0) = W (0)Σ̃q(0)W T (0)Σ−1
p RT (0)

= W (0)
[
Σq + Σp − Q̃(0)

]
W T (0)Σ−1

p

respectively. The sum of Φp(0) and Φq(0) is then

Φp(0) + Φq(0) = Σ̄(0)Σ−1
p +W (0) (Σp + Σq)W

T (0)Σ−1
p

=
[
Σ̄(0) +W (0) (Σp + Σq)W

T (0)
]

Σ−1
p .

However, since W (0) = Σ̄(0)RT (0)Σ−1
q = Σ̄(0)Σ−1

q when θ = 0, it follows that

Φp(0) + Φq(0) =
[
Σ̄(0) +W (0) (Σp + Σq)W

T (0)
]

Σ−1
p

=
[
Σ̄(0) + Σp − Σ̄(0)

]
Σ−1
p

= [Σp]Σ
−1
p

= I2n

which proves that Φp(0) + Φq(0) = I2n. �
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CHAPTER 3

CRAMÉR-RAO BOUNDS OF MODEL PARAMETERS

3.1 Introduction

This chapter derives benchmark performance bounds known as the Cramér-Rao

lower bounds [27, 28, 29, 30] for the maximum likelihood estimators proposed in

Theorem 1. The bounds are derived by applying the following theorem in the case

of Gaussian model.

Theorem 2 Suppose that a random variable X has an n-variate Gaussian distri-

bution with a probability density function parameterized by φ as

pX(x;φ) =
1√

(2π)n|Σ(φ)|
exp−1

2
[x−m(φ)]TΣ−1(φ)[x−m(φ)], (3.1)

then the entries of the Fisher information matrix I(φ) are given by

Iij(φ) =

[
∂m(φ)

∂φi

]T
Σ−1(φ)

[
∂m(φ)

∂φj

]

+
1

2
trace

{
Σ−1(φ)

[
∂m(φ)

∂φi

]T
Σ−1(φ)

[
∂m(φ)

∂φj

]} (3.2)

so that I(φ) = [Iij(φ)].

Proof: See Kay [31], App. 3C. �
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3.2 Gaussian Cramér-Rao lower bounds

Consider the Gaussian model of n points (referred to as landmarks) given by the

random variable of the form

X ∼ N (m(φ),Σ(φ)) (3.3)

with model parameters φ = (µT , tT , θT )T consisting of the (x, y)-coordinates

µ ∈ R2n, the rotation angle θ ∈ [−π, π] and the translation parameter t ∈ R2.

The deterministic, but unknown, mean of (3.3) is partitioned into two parts, cor-

responding to coordinates systems p and q, as

m(φ) =

 µ

R(θ)µ+ Ft

 (3.4)

with covariance Σ(φ) = σ2I4n. Under this model, the entries of the Fisher infor-

mation matrix [31] I(φ) = [Iij(φ)] are given by

Iij(φ) =
1

σ2

[
∂m(φ)

∂φi

]T [
∂m(φ)

∂φj

]
(3.5)

which are computed from the partial derivatives of m(φ) with respect to the model

parameters. In vector form, the partial derivatives are given by

Dµ =
∂m(φ)

∂µ
=

 I2n

R(θ)

 (3.6)

Dt =
∂m(φ)

∂t
=

 02n×2

F

 (3.7)

Dθ =
∂m(φ)

∂θ
=

 02n×1

R(θ)LTs µ

 (3.8)
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with Ls = In ⊗

 0 −1

1 0

, which leads to the Fisher information matrix

I(φ) =
1

σ2


DT
µDµ DT

µDt D
T
µDθ

DT
t Dµ DT

t Dt D
T
t Dθ

DT
θ Dµ DT

θ Dt D
T
θ Dθ



=
1

σ2


2I2n RT (θ)F LTs µ

F TR(θ) F TF F TR(θ)LTs µ

µTLs µTLsR
T (θ)F µTµ

 .

(3.9)

Using the matrix (3.9), the Cramér-Rao lower bound (CRLB) covariance of the

model parameter φ is then P (φ) = I−1(φ), which leads to the following theorem

concerning the performance bounds of the entries of φ.

Theorem 3 The Cramér-Rao lower bounds (CRLBs) of the parameters {µ, t, θ}

are given by the following expressions.

1. The CRLB of the rotation parameter θ is

Pθ,θ = σ2 1

ζ
(3.10)

where ζ = 1
2
µTQµ and Q = I2n − F (F TF )−1F T .

2. The CRLB of the parameter µ is

Pµ,µ = σ2

(
U +

1

ζ
uuT

)
(3.11)

where U = I2n − 1
2
Q and u = 1

2
QLTs µ.
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3. The CRLB of the translation t is

Pt,t = σ2

(
V +

1

ζ
vvT
)

(3.12)

where V = 2
n
I2 and v = 1

n
F TR(θ)LTs µ.

Proof: The CRLBs of the model parameters {µ, t, θ} are determined by con-

sidering the block partitioning of the Fisher information matrix (3.9) of the form

I(φ) =
1

σ2

 A b

bT c

 (3.13)

where A, b and c are given by

A =

 2I2n RT (θ)F

F TR(θ) F TF

 , b =

 LTs µ

F TR(θ)LTs µ


and c = µTµ, respectively. The inverse Fisher information matrix I−1(φ) is com-

puted from the inverse of A, which is determined by using the matrix

B =

 I2n 02n×2

−1
2
F TR(θ) I2

 (3.14)

to decompose A into a block diagonal form (known as the Aitken block-

diagonalization) given by

Ã = BABT

=

 2I2n

1
2
F TF

 .

(3.15)
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Using the relation F TF = nI2, it follows that the inverse of the matrix A is

computed as

A−1 =
(
B−1Ã

[
BT
]−1
)−1

= BT Ã−1B

=

 U − 1
n
RT (θ)F

− 1
n
F TR(θ) V


(3.16)

where U = I2n − 1
2
Q and V = 2

n
I2. Using the inversion formula provided in [32]

and the expression of A−1 given by (3.16), it follows that the inverse of (3.13) is

computed as

I−1(φ) = σ2


A−1 + 1

ζ
A−1bbTA−1 −1

ζ
A−1b

−1
ζ
bTA−1 1

ζ



= σ2


Pµ,µ Pµ,t Pµ,θ

Pt,µ Pt,t Pt,θ

Pθ,µ Pθ,t Pθ,θ



(3.17)

where ζ = c − bTA−1b = 1
2
µTQµ and the covariances Pµ,µ, Pt,t and Pθ,θ are given

by (3.11), (3.12) and (3.10), respectively. �

The performance of the closed-form ML estimators given in Theorem 1 relative

to the Cramér-Rao bounds of Theorem 3 is shown in Fig. 3.1.
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Figure 3.1: Cramér-Rao lower bounds and performance of closed-form MLE. (top)
A plot of the trace of the CRLB covariance matrices Pµ,µ, Pt,t and Pθ,θ derived
from the parameters µ (common landmarks), t (translation) and θ (rotation),
respectively, is shown above in the figure. The plots are shown against the variance
of the closed-form ML estimators µ∗, t∗ and θ∗.
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CHAPTER 4

GENERALIZED LIKELIHOOD DATA REGISTRATION

In a general mapping scenario, the ground truth structure observed by the

agents is unknown. In particular, if the first two entries of Xp = xp correspond

to the particular landmark, then the first two entries of Xq = xq correspond to a

different landmark in general (and likewise with the remaining entries). Common

landmarks in this case are identified by applying a matching procedure to xp and

xq with consideration that the stochastic maps are obtained in separate coordinate

systems related by θ and t. The matching procedure proposed in this section is

based on the use of landmark triplets referred to as triangles, which requires that

the maps of each agent contain at least three landmarks. An overview of the

registration approach is shown in Fig. 4.1.

4.1 Directed hypergraph model

Triangles are constructed from the maps of each agent by following a direction

convention used in the star-pattern matching approach of Groth [24]. In partic-

ular, given three landmark locations ya, yb, yc ∈ R2, the Groth representation of

a directed triangle is y = (yTa , y
T
b , y

T
c )T , which is a vector in R6 with entries that

follow the inequality

||ya − yb|| < ||yb − yc|| < ||yc − ya|| (4.1)

under the assumption that no two triangle edges have the same length. This

convention, which is invariant to changes in rotation and translation is used to

construct the directed hypergraphs Gp = (Vp, Ep) and Gq = (Vq, Eq) from the

Delaunay triangulations of maps p and q, respectively. The landmarks that form
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Student Version of MATLAB

Student Version of MATLAB
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(coordinate system q)(coordinate system p)

Matching and outlier rejection

Student Version of MATLAB

Student Version of MATLAB

Likelihood matrix ∆

Directed hypergraph model
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Figure 4.1: Overview of data registration approach. Common landmarks and
rigid-body transform parameters are determined using a directed hypergraph rep-
resentation of metric maps. Likelihood statistics of common directed triangles are
stored in a matrix ∆, which is used to determine common landmarks by solving a
linear assignment problem. The solution of the assignment problem is partitioned
into inliers and outliers using a quaternion outlier rejection approach.
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the vertices of each graph are contained by Vp (agent p) and Vq (agent q). The

resulting directed triangles constructed from the maps of p and q are contained by

the hyperedges Ep and Eq, respectively, with each directed triangle being indexed

in order of increasing perimeter.

4.2 Hypergraph hypothesis testing

Determining common landmarks from the directed triangles of Gp and Gq is con-

sidered as a binary hypothesis testing problem. Under hypothesis H0, the agents

observe the ground truth directed triangles νp, νq ∈ R6, which contain a maximum

of two landmarks in common. Under hypothesis H1, the agents observe a common

directed triangle δ ∈ R6 within their respective coordinate systems. In this way,

H0 is the hypothesis of uncommon triangles and H1 is the hypothesis of common

triangles. The mathematical models of H0 and H1 are given by

H0 :

 Yp
Yq

 ∼ N
 νp

νq

 ,
σ2

pI

σ2
qI

 (4.2)

H1 :

 Yp
Yq

 ∼ N
 δ

R(θ)δ + Ft

 ,
σ2

pI

σ2
qI

 (4.3)

respectively. The appropriate matching hypothesis (i.e., H0 or H1) for the directed

triangle data Yp = yp and Yq = yq is initially unknown. Given the realizations yp

and yq from the stochastic maps of p and q, respectively, the matching hypothesis

is determined using a generalized likelihood ratio test (GLRT) of the form

Λ(yp, yq) =
max
δ,t,θ

L1(δ, t, θ)

max
νp,νq

L0(νp, νq)

H1

≷
H0

τ (4.4)
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Figure 4.2: Monte Carlo performance of hypergraph hypothesis testing. Receiver
operating characteristic (ROC) curves, illustrated above, show the performance of
the detecting triangle matches at various levels of SNR. Each of the curves are plots
of the probability of detecting a match (PD) versus the probability of a false alarm
(PFA). The dashed line in the lower region of the figure indicates the performance
of a random guess.

where Lk are likelihood functions under Hk, with k ∈ {0, 1}, and the threshold

τ is selected to control the level of false alarm. The likelihood statistic Λ(yp, yq)

is easily computed by applying Theorem 1. The performance of the approach in

the presence of noise, as illustrated by the receiver operating characteristic (ROC)

curves of Fig. 4.2, is of interest due to the uncertain nature of stochastic maps.

As illustrated in the figure, the performance of the approach degrades gracefully

with increasing noise (the signal-to-noise ratio, or SNR, is discussed in Section 5).
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4.3 Data registration and environment structure

4.3.1 Natural vs. semi-structured environments

A desirable trait of any data fusion approach is the ability to maintain performance

in a variety environments and with different types of sensors. Data obtained from

two types of environments and sensors are considered in this section, each of which

are illustrated in Fig. 4.3. A natural environment with data obtained from a

laser sensor is shown in Fig. 4.3a. In such an environment, natural landmarks

such as trees are used to build a rigid-body model from data. In contrast, a semi-

structured environment with data obtained from a camera sensor is shown in Fig.

4.3b. Landmarks such as edges and corner points usually aid in the construction

of metric maps in environments of this type. While the data fusion approach

of this paper makes no assumption on the type of sensor or environment, the

benchmark datasets are used to show the potential application of the approach to

rigid-body data generated from a wide range of environments and sensors. The

simulated examples of Fig. 4.4 illustrate two classes of landmark arrangements

related to the experimental examples of Fig. 4.3. From a registration perspective,

the arrangement of landmarks in the Victoria Park example (Fig. 4.3a) resembles

samples drawn from a uniform distribution (Fig. 4.4a) and landmarks in the DLR

example (Fig. 4.3b) resemble landmarks arranged in a deterministic grid with

additive noise (Fig. 4.4b).
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Student Version of MATLAB

(b)

Figure 4.3: Benchmark rigid-body models of natural and semi-structured environ-
ments. (a) Victoria Park provides an example of a natural outdoor environment
(dataset courtesy of the University of Sydney). Landmark locations in the envi-
ronment are determined using a laser range finder. (b) An example of a semi-
structured indoor environment is provided by the DLR Institute of Robotics and
Mechatronics building (dataset courtesy of the University of Bremen). In contrast
to the Victoria Park dataset, a camera sensor is used to determine the locations
of landmarks within a research facility.
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(a) (b)

Figure 4.4: Synthetic models of natural and semi-structured environments. (a)
Samples drawn from a uniform distribution provide a model of landmarks within
a natural environment. (b) Landmarks in a semi-structured environment are mod-
eled in this example by points in a deterministic grid with additive noise. Each
of the examples provide simple models of the spatial arrangement of landmarks in
different types of environments.

4.3.2 Hypergraph registration

An illustration of the hypergraph model as it relates to data registration is shown

in Fig. 4.5. The figure illustrates the determination of common landmarks by

identifying common directed triangles across the coordinate systems of each hy-

pergraph. Using Theorem 1, a metric for determining whether a triangle yp ∈ Ep
in hypergraph Gp corresponds to a triangle yq ∈ Eq in hypergraph Gq is given by

the likelihood statistic

Λ(yp, yq) =
max
δ,t,θ

L1(δ, t, θ)

max
νp,νq

L0(νp, νq)
(4.5)

where the parameter δ ∈ R6 is the location of the common triangle and the param-

eters νp, νq ∈ R6 are the locations of uncommon triangles. The metric is computed
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in closed form from yp and yq as specified by Theorem 1 since

max
δ,t,θ

L1(δ, t, θ) = L1(δ∗, t∗, θ∗) (4.6)

under the hypothesis that yp and yq correspond to a common directed triangle

Student Version of MATLAB

Student Version of MATLAB

Student Version of MATLAB

Student Version of MATLAB

0 25 50m

Figure 4.5: Application of directed hypergraph model to data registration. (left)
Illustrated in the figure are rigid-body models of a natural environment shown
in three separate coordinate systems. (right) Common landmarks represented
in different coordinate systems are determined by matching directed triangles
constructed from Delaunay triangulations (common directed hyperedges are illus-
trated by the shaded triangles). Once common triangles are determined between
each hypergraph, rotation and translation parameters are estimated in closed form
using the vertices of the matched triangles.
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parameter δ and

max
νp,νq

L0(νp, νq) = L0(ν∗p , ν
∗
q ) (4.7)

under the hypothesis that yp and yq correspond to two separate directed triangle

parameters νp and νq, respectively (in the later case, yp and yq contain only two

common landmarks at best and no common landmarks in general). Likelihood

statistics computed from Gp and Gq, as specified by (4.5), are stored in matrix

form as ∆ = [fij(y
i
p, y

j
q)] with entries

fij(y
i
p, y

j
q) =


Λ(yip, y

j
q) , i ∈ P and j ∈ Q

0 , o.w.

(4.8)

where P = {1, 2, . . . , |Ep|} and Q = {1, 2, . . . , |Eq|}. Constructing the matrix ∆

from the directed triangles of Gp and Gq leads to a linear assignment problem

[33, 34] of the form

maximize
m∑
i=1

m∑
j=1

fij(y
i
p, y

j
q)zij (4.9)

subject to
m∑
i=1

zij = 1, j = 1, . . . ,m (4.10)

m∑
j=1

zij = 1, i = 1, . . . ,m (4.11)

and zij ∈ {0, 1}, (4.12)

where m = max(|Ep|, |Eq|), which is readily solved using optimized routines such

as the Jonker-Volgenant algorithm [35] by relaxing the integer program to a linear

program with decision variables zij ∈ [0, 1]. An illustration of the approach using

the Victoria Park and DLR benchmarks is shown in Fig. 4.6.
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Figure 4.6: Registration of landmarks in natural and semi-structured environ-
ments. (a) Rigid-body models of the Victoria Park are shown in the coordinate
systems of a fusion agent p and a contributing agent q. (b) Common landmarks
are determined by solving a linear assignment problem involving directed triangles
(the solution of the assignment problem is illustrated in the figure by shaded tri-
angles with corresponding color gradients). The approach is also illustrated using
the DLR dataset with rigid-body models shown in (c) and the registration solution
shown in (d).
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Using the solution of the assignment problem, a collection C = {c1, c2, . . . , cm}

of correspondence variables is constructed to indicate m common landmarks de-

rived from the vertices of directed triangles. Rigid-body transform parameters

are then estimated by applying Theorem 1 to compute t∗ and θ∗ using the com-

mon landmarks indicated by C. The data registration solution is thus of the form

R = {C, t∗, θ∗}, which is used to compute a combined global model using the data

fusion rules proposed in Section 2.4.

An illustration of the data fusion approach and structure of the matrix ∆

is shown in Fig. 4.7. The data fusion examples in the figure, which illustrate

the approach using the Victoria Park and DLR benchmarks, show the combined

global models within the coordinate system of the fusion agent p in addition to the

likelihood structure of the explored environment. Using the directed hypergraph

model, the structure of the environment (and subsequently, the complexity of

the registration problem) is indicated in part by the bandedness of the likelihood

matrix ∆.

4.4 Outlier rejection

The solution of the assignment problem provides a list of candidate common tri-

angles between the hypergraphs of each agent. Associated with each triangle as-

signment is a maximum likelihood estimate of the parameters θ and t derived from

the vertices of the triangles in order to compute the likelihood matching statistic

(4.5). Under rigid body assumptions, inliers in the candidate triangle assignments

are indicated by rigid-body rotation and translation parameters that form a clus-

ter around the true values of θ (in radians) and t (in meters). A simple approach

to obtain a composite representation of θ and t is to compute a unit quaternion
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[36, 37] of the form

q =

(
cos

1

2
θ

)
+ u

(
sin

1

2
θ

)
(4.13)

where θ is a rotation angle about the rotation axis u ∈ R3 of unit magnitude. By
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(b)

Figure 4.7: Data fusion and likelihood structure. An illustration of anisotropic
data fusion in the coordinate system of a fusion agent p is shown above using the
(a) Victoria Park and (b) DLR examples. The likelihood matrix ∆ in each case
provides an indication of the underlying structure of the environment. In contrast
to the likelihood matrix of the DLR environment, the matrix ∆ of the Victoria
Park example naturally exhibits a banded structure.
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defining the rotation axis u relative to the unit z-axis, denoted by ez = (0, 0, 1)T ,

a combined representation of θ and t is obtained using Algorithm 2, where the

matrix R(q) is a 3× 3 rotation computed from the entries of q = (q0, qx, qy, qz)
T as

R(q) =


q2

0 + q2
x − q2

y − q2
z 2(qxqy − q0qz) 2(qxqz + q0qy)

2(qyqx + q0qz) q2
0 − q2

x + q2
y − q2

z 2(qyqz − q0qx)

2(qzqx − q0qy) 2(qzqy + q0qx) q2
0 − q2

x − q2
y + q2

z

 . (4.14)

The resulting representation of the rigid-body transform parameters is a 3D coor-

dinate ρ ∈ R3 on the unit sphere. Inliers in candidate triangle assignments are thus

indicated by unit sphere coordinates that form a cluster around the coordinate ρ

computed from the true values of θ and t. Using the spherical representation of

the rigid-body transform parameters provided by Algorithm 2, inliers and outliers

are detected by applying standard random sample consensus (RANSAC) [38] rou-

tines to the resulting 3D points. An illustration of the outlier rejection approach

is shown in Fig. 4.8. Eliminating outliers in triangle assignments leads to a regis-

tration solution given by R∗ = {C∗, t∗, θ∗}, where C∗ ⊆ C is the collection of inlier

correspondence variables used to compute the parameters t∗ and θ∗.

Algorithm 2 Quaternion representation of θ and t

Input: Rotation parameter θ ∈ [−π, π] and translation t ∈ R2

Output: Unit sphere coordinate ρ ∈ R3, unit quaternion q

Application: Outlier rejection

1: v =

(
t
1

)
2: q = cos

θ

2
+

v

||v|| sin
θ

2

3: ρ = R(q)ez
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Figure 4.8: Identifying inliers and outliers in hypergraph registration. (a) Com-
mon triangles between the hypergraphs Gp and Gq, determined by solving a linear
assignment problem, are indicated in the figure by black markers superimposed on
a likelihood matrix ∆. (b) Each entry of the assignment solution is used to com-
pute an estimate of the rigid body parameters t and θ, illustrated above using a
quaternion representation on the unit sphere. Inliers (red dots) and outliers (black
crosses) are determined by applying random sample consensus to the spherical
representation. (c) For illustration purposes, the corresponding rigid-body param-
eters (classified as inliers and outliers) are plotted in order of decreasing likelihood
statistics.
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CHAPTER 5

NUMERICAL EXAMPLES AND SIMULATIONS

5.1 Victoria Park example

An illustration of the proposed ML fusion approach is shown in Fig. 5.1. The

ground truth landmarks shown in the figure are obtained by applying the sparse

local submap joining filter (SLSJF) proposed by Huang et al. [39] to the Victoria

Park dataset. The ground truth is partitioned into two vectors up and uq as

models of the ground truth landmark locations observed by agent p and agent q,

respectively (see Chapter 2). The stochastic maps of each agent are generated using

the additive noise model discussed in Section 2.4 at an SNR of 30dB. The rotation

(in radians) and translation (in meters) applied to the stochastic map agent q are

θ = 0.7854 and t = (100, 5)T , respectively. As illustrated in the figure, θ and t

parameterize a spatial transform of the stochastic map of agent q in reference to

the ground truth coordinate frame (i.e., the coordinate system of agent p).

The directed hypergraph representation of each stochastic map is used by the

GLR matching to determine the common directed triangles across the coordinate

systems of the agents (using the Groth convention enables to the determination

of common landmarks from common directed triangles). The number of directed

triangles in hypergraphs p and q are |Ep| = 340 and |Eq| = 304, respectively. Due

to the uncertainty of the stochastic maps, outlier rejection is required to determine

an inlier set of matching triangles (as illustrated in Fig. 5.2). Theorem 1 is then

applied to the inlier landmarks to compute the closed form MLEs θ∗ = 0.7878 and

t∗ = (100.0860, 4.9120)T . Maximum likelihood estimation of the combined map

u∗ = (µ∗T , v∗Tp , v∗Tq )T immediately follows from Lemma 1 and Theorem 1.
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Data Models

Student Version of MATLAB Student Version of MATLAB

Ground truth

0 25 50m

Student Version of MATLAB Student Version of MATLAB

Hypergraph Registration

Figure 5.1: Hypergraph registration (Victoria Park example): ground truth and
registration solution. (Ground truth) The true landmark locations observed by
agent p and agent q are indicated by crosses (+) and circles (◦), respectively. The
agents observe 50 landmarks in common (contained by the vector µ) with agent p
observing 179 landmarks (contained by up) and agent q observing 160 landmarks
(contained by uq). (Data models) The individual stochastic maps of the agents
are generated using an additive Gaussian noise model, with the map of agent q
being transformed into a separate coordinate system by θ and t. (Hypergraph
registration) Using linear programming and outlier rejection, an inlier set of 16
common directed triangles (shaded in gray) are used to estimate the common
landmark parameters of the data models.
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Figure 5.2: Hypergraph registration (Victoria Park example): likelihood statistics
and outlier rejection. Markers are used to indicate entries of the likelihood matrix
∆ corresponding to (a) the true directed triangle matches, (b) the triangle matches
specified by the linear program. (c) Inlier matches (black circles) are indicated by
the rigid-body transform parameters that cluster around the true values of t and
θ, with outliers (gray crosses) indicated by the entries that fall outside the cluster.
(d) After applying outlier rejection to the output of the linear program, 16 inlier
matches are used to construct the registration solution R∗.
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5.2 Monte Carlo experiments

This section considers the performance of the data fusion rules proposed in Section

2.4 and the hypergraph registration approach described in Section 4.3. Monte Carlo

results are provided by considering the performance of the approach when applied

to large scale experimental models (Fig. 4.3) and small scale synthetic models

(Fig. 4.4) of natural and semi-structured environments over a wide range of noise

and landmark overlap, as illustrated in Fig. 5.3.

The Monte Carlo performance of the proposed data registration approach (see

Section 4.3) is evaluated over varying levels of landmark overlap and noise using the

ground truth hypergraph models shown in Fig. 5.4. The performance is evaluated

using both synthetic and experimental ground truth models, which exhibit a similar

Overlap (%) = 40

Student Version of MATLAB

Overlap (%) = 0

Student Version of MATLAB

Overlap (%) = 100

Student Version of MATLAB

Overlap (%) = 60

Student Version of MATLAB

(a) (b) (c) (d)

SNR (dB) = 10

Student Version of MATLAB

SNR (dB) = 20

Student Version of MATLAB

SNR (dB) = 30

Student Version of MATLAB

SNR (dB) = 40

Student Version of MATLAB

(e) (f) (g) (h)

Figure 5.3: Illustration of overlap and noise models. Hypergraph models are shown
above for a fusion agent p (left) and a data contributor q (right) in various overlap
and noise scenarios. The top row illustrates common triangles (red) and uncommon
triangles (white) in hypergraphs of (a) 100%, (b) 60%, (c) 40% and (d) 0% overlap.
The bottom row (e-h) illustrates the impact of noise at a fixed overlap of 100%.
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structure of the likelihood matrix ∆ (bottom row of Fig. 5.4). The edge lengths

{`i} of each graph are used to compute the signal variance given by σ2
s = 1

m

∑m
i=1 `

2
i .

A noise variance is computed as σ2
n = 2σ2 since zero-mean Gaussian noise is added

to the individual vertices of each edge with a variance of σ2. Using the signal

variance σ2
s and noise variance σ2

n, the signal-to-noise ratio (SNR) in decibels is

then SNRdB = 10 log(σ2
s/σ

2
n). The noise level of each Monte Carlo experiment

is thus specified by solving for the noise variance σ2
n as a function of the signal

variance and SNR.
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Figure 5.4: Ground truth models and likelihood structure. The top row shows
Delaunay triangulations of ground truth points computed from (a) 100 points
(189 triangles) drawn from a uniform distribution, (b) 100 points (185 triangles)
arranged in a deterministic grid with additive noise, (b) the Victoria Park example
with 299 points (576 triangles) and (d) the DLR example with 549 points (1073
triangles). The bottom row shows the likelihood matrix ∆ associated with each
model. The figure illustrates similarities in ∆ between the natural environment
models of (a) and (c) and the semi-structured models of (b) and (d).
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Four metrics of performance are illustrated in Fig. 5.5:

1. the true percentage of common triangles relative to the ground truth model

of the environment,

2. the percentage of true positive triangle assignments determined by the solu-

tion of the linear assignment problem,

3. the absolute difference (normalized as a percentage) indicating the difference

between the true percentage of common triangles and the percentage true

positives and

4. the percentage of matched (inlier) triangle assignments (relative to the true

number of common triangles) after applying outlier rejection.

The results indicate a graceful degradation in performance with decreasing

SNR. However, the approach begins to break down in the noise range of SNRdB ≤

20 dB due to either a lack of (or inability to detect) common triangles. The

resulting data fusion mean square error (MSE) relative to the coordinate system

of fusion agent is shown in Fig. 5.6.
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Figure 5.5: Monte Carlo performance of hypergraph matching. Varying the levels
of noise and overlap results in a change in (a) the percentage actual common
triangles relative to the ground truth of Gp and Gq and (b) the number of true
positive common triangles determined by the linear assignment problem (LAP).
The absolute difference between (a) and (b), normalized as a percentage, is shown
in (c), which shows that the difference between the LAP solution and ground
truth is small for a reasonably wide range of overlap and noise, resulting in the
percentages of matched triangles after outlier rejection shown in (d).
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Figure 5.6: Monte Carlo MSE (in dB) performance. The plot shows that in the
range of 15%-100% overlap in landmarks, the data fusion MSE exhibits a linear
degradation in performance with decreasing SNR. However, the data fusion MSE
is relatively high at all noise levels below a 15% overlap in landmarks due to a
general lack of common triangles.
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CHAPTER 6

CONCLUSION

This thesis considered the problem of constructing a global map of landmarks

from the data models contributing agents. The problem can be formulated as a

mixed integer-parameter estimation problem from which landmarks common to a

fusion agent and data contributor are registered under a global coordinate system.

Under this framework, the optimal fusion of stochastic maps can be accomplished

using the maximum likelihood principle. Unfortunately, however, the complexity

of the true ML solution is prohibitive, which leads to a partitioning of data fusion

into two main parts: (i) data registration using a bipartite directed hypergraph

matching using generalized likelihood ratio statistics and (ii) parameter estimation

to obtain the estimated of the combined map under a common coordinate frame.

The main advantage of the proposed approach is the comprehensive nature

of the procedure: a global map is found in spite of the individual data models

being obtained in separate coordinate systems without prior knowledge of common

landmarks. The performance of the proposed approach is found to be reasonable

at high SNR but deteriorates gracefully with increasing noise, which is largely due

to a decrease in common directed triangles. One way to improve the performance

would be to impose neighborhood and adjacency constraints on the hypergraph

model. Further computation gains may also be found by exploiting the banded

structure of the likelihood matrix ∆.

With continual advances in sensors and computational ability, the future of

mobile robotics is bright. With any hope, the techniques proposed in this thesis will

help pave the way to increased autonomy in multi-agent perception and navigation

systems, as shown in Fig. 6.1.
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Figure 6.1: The author with several robotic agents. In the absence of a global frame
of reference, a global metric model of an environment is constructed from the data
models of multiple robotic agents (such as those pictured above) by applying data
fusion techniques of the nature proposed in this thesis.
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APPENDIX

A.1 Review of sigma point filter

This section reviews the sigma point filter [40] (illustrated in Fig. A.1) as an

example algorithm for constructing metric data models of an environment. Sigma

points, denoted by X [0]
k−1,X

[1]
k−1, . . . ,X

[2L]
k−1 where k is a time index, are variables

drawn from the multivariate normal distribution using a deterministic sigma point

sampler given by

X [i]
k−1 =


x̂k−1 for i = 0

x̂k−1 +
√

(L+ λ) Σi,k−1 for i = 1, . . . , L

x̂k−1 −
√

(L+ λ) Σi−L,k−1 for i = L+ 1, . . . , 2L

where L is the dimension of the state estimate (i.e., x̂k−1 ∈ RL) and the parameter

λ = α2(L + κ) − L determines the spread of the sigma points. The notation

Σi,k−1 denotes column i of the covariance matrix Σk−1. Sigma points are also

characterized by the weights

w
[0]
m = λ(L+ λ)−1

w
[0]
c = λ(L+ λ)−1 + (1− α2 + β)

w
[i]
m = w

[i]
c = [2(L+ λ)]−1 for i = 1, . . . , 2L

where w
[·]
m and w

[·]
c are weights associated with mean and covariance, respectively

(choose β = 2 for Gaussian distributions [40]). Using the notation γ =
√

(L+ λ)

for brevity, the sigma point filter (also known as the unscented Kalman filter, or

UKF), is specified given a nonlinear process model f(·), with control input uk at

time-step k, and nonlinear measurement model h(·) as follows.
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Sample

Predict

Correct

x̂k Σk

X̄k|k−1Σ̄kx̄k

Xk−1

x̂k−1 Σk−1 uk

yk

Figure A.1: Block diagram of sigma point filter.

A.1.1 Sample

X [i]
k−1 = x̂k−1 for i = 0

X [i]
k−1 = x̂k−1 + γ

√
Σi,k−1 for i = 1, . . . , L

X [i]
k−1 = x̂k−1 − γ

√
Σi−L,k−1 for i = L+ 1, . . . , 2L

A.1.2 Predict

X̄ [i]
k|k−1 = f

(
X [i]
k−1, uk

)
for i = 0, . . . , 2L

x̄k =
2L∑
i=0

w[i]
mX̄ [i]

k|k−1

Σ̄k =
2L∑
i=0

w[i]
c

(
X̄ [i]
k|k−1 − x̄k

)(
X̄ [i]
k|k−1 − x̄k

)T
+Qk
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A.1.3 Correct

Sigma-point update

X̄ [i]
k|k = x̄k for i = 0

X̄ [i]
k|k = x̄k + γ

√
Σ̄i,k for i = 1, . . . , L

X̄ [i]
k|k = x̄k − γ

√
Σ̄i−L,k for i = L+ 1, . . . , 2L

Measurement prediction

Ȳ [i]
k = h

(
X̄ [i]
k|k

)
for i = 0, . . . , 2L

ȳk =
2L∑
i=0

w[i]
mȲ [i]

k

Kalman update (with measurement noise covariance Rk)

Sk =
2L∑
i=0

w[i]
c

(
Ȳ [i]
k − ȳk

)(
Ȳ [i]
k − ȳk

)T
+Rk

Wk =

(
2L∑
i=0

w[i]
c

(
X̄ [i]
k|k − x̄k

)(
Ȳ [i]
k − ȳk

)T)
S−1
k

x̂k = x̄k +Wk (yk − ȳk)

Σk = Σ̄k −WkSkW
T
k .
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